## Exercise 28

The table shows how the average age of first marriage of Japanese women has varied since 1950 .

| $t$ | $A(t)$ | $t$ | $A(t)$ |
| :---: | :---: | :---: | :---: |
| 1950 | 23.0 | 1985 | 25.5 |
| 1955 | 23.8 | 1990 | 25.9 |
| 1960 | 24.4 | 1995 | 26.3 |
| 1965 | 24.5 | 2000 | 27.0 |
| 1970 | 24.2 | 2005 | 28.0 |
| 1975 | 24.7 | 2010 | 28.8 |
| 1980 | 25.2 |  |  |

(a) Use a graphing calculator or computer to model these data with a fourth-degree polynomial.
(b) Use part (a) to find a model for $A^{\prime}(t)$.
(c) Estimate the rate of change of marriage age for women in 1990.
(d) Graph the data points and the models for $A$ and $A^{\prime}$.

## Solution

## Part (a)

Let $t$ instead be the number of years after 1950. Mathematica's FindFit function gives

$$
A(t) \approx\left(-1.19978 \times 10^{-6}\right) t^{4}+0.000187563 t^{3}-0.00830855 t^{2}+0.177721 t+23.0681
$$

as the fourth-degree polynomial that best fits the data.


## Part (b)

Take the derivative of this function to get the rate that the marriage age increases per year.

$$
\begin{aligned}
\frac{d A}{d t} & \approx \frac{d}{d t}\left[\left(-1.19978 \times 10^{-6}\right) t^{4}+0.000187563 t^{3}-0.00830855 t^{2}+0.177721 t+23.0681\right] \\
& \approx\left(-1.19978 \times 10^{-6}\right)\left(4 t^{3}\right)+0.000187563\left(3 t^{2}\right)-0.00830855(2 t)+0.177721(1)+0 \\
& \approx\left(-4.79912 \times 10^{-6}\right) t^{3}+0.00056269 t^{2}-0.0166171 t+0.177721
\end{aligned}
$$

## Part (c)

Plug in $t=40$ to get the rate of change of the marriage age per year in 1990.

$$
\begin{aligned}
\frac{d A}{d t}(40) & \approx\left(-4.79912 \times 10^{-6}\right)(40)^{3}+0.00056269(40)^{2}-0.0166171(40)+0.177721 \\
& \approx 0.106198
\end{aligned}
$$

## Part (d)

Below is a graph of the model for $A^{\prime}(t)$ versus $t$.


